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Vessel Dynamic Positioning Multi-sensor Fusion Based

on Fuzzy Adaptive Unscented Kalman Filter

XU Shusheng, LI Juan
(College of Electromechanical Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109 ,China)

Abstract; To improve the performance of multi-sensor fusion of vessel dynamic positioning system (DPS), a hierar-
chical fusion algorithm based on fuzzy adaptive unscented Kalman filter (UKF) is proposed. It combines the fuzzy
adaptive filter algorithm established by using the covariance matching principle, the measurement quality control al-
gorithm and the sub-system fault diagnosis algorithm established by using innovation. Then, the first-level parallel
fusion algorithm is set up by using filter state parameters and the second-level fusion is established based on the mu-
tually independent first-level fusion performance. In this way, a multi-sensor fusion algorithm is thus established
based on fuzzy adaptive UKF, and the dynamic hierarchical fusion of multi-sensor is achieved. The numerical simu-
lation results verifies the effectiveness of the proposed algorithm.
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Conventional UKF has no capability to adapt itself to changing conditions of the measurement system.
The uncertainty of the process and measurement noise usually degrades the performance of the filter.
Therefore, a robust algorithm must be introduced so that the filter can make itself insensitive to measure-

ments in case of malfunctions and correct estimation process without affecting the good estimation behav-
iort’, Based on multiple model and residual adaptive filter, algorithms can be built. In multiple-model-
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based adaptive estimation, more than one filter runs parallel under different models in order to satisfy the

(31

filter’s true statistical information In residual-based adaptive filter, the covariance matrices of the

measurement and/or system noise are adjusted adaptively to overcome their uncertainties™®. The fuzzy
technique can be applied to adaptive filter to achieve the adjusting factor for noise covariance matrices” .

To improve the local filter accuracy and robustness, the measurements must be inspected, and the
subsystem fault must also be detected dynamically. Based on the filter innovation, different data quality

control algorithmsH -

as well as many fault detection and isolation methods-'*** have been proposed. All
the approaches have improved the filter performance and the robustness of the system.

In order to improve the fusion performance, the accurate credibility parameters of local filters are re-
quired to calculate the weighted factors for the global fusion. Many fuzzy methods have been developed by

using several filter state parameters to obtain the credibility parameters of filterst

. These approaches can
improve the fusion accuracy.

In this paper, a fuzzy adaptive UKF and a multi-level hierarchical fusion algorithm are built. Based on
the proposed fuzzy adaptive UKF, not only can the measurement noise covariance be adjusted, but the
measurement data can be inspected and the sensor faults can be detected as well. According to the idea of
multi-sensor data fusion, this paper proposes a multi-sensor hierarchical fusion algorithm using some state
parameters of the filter. This approach can improve the fusion accuracy and the system fault-tolerance.
The three redundancy heading measurement systems of vessel dynamic positioning are regarded as the re-

search object to illustrate the algorithm. A semi-physical simulation system is to be carried out to evaluate

the performance of the proposed algorithm.
1 Fuzzy adaptive UKF algorithm

1.1 The model of the vessel heading measure- |
ment system

The horizontal motion of a surface ship is
usually described by the motion components in
surge, sway, and yaw. To describe the mo-
tion of the vessel, the North-East-Down and

the body-fixed reference frames need to be

built™"*. The related two-dimensional refer- ¥,

G, >

ence frame is shown in Fig. 1.
As discussed above, vectors Py and V, are Fig. 1 The two-dimensional reference frame
defined as:
P.=[x vy (/;]T,V,, =[u o r]". (D)
Where variables x , y and ¢ represent surge, sway, and yaw respectively, and the u , v and r represent
the corresponding speed variables respectively.
Neglecting the elements corresponding to heave, roll and pitch finally, the approximate relationship
between the two vectors is shown in Eq. (1)
Pr = J(V,. (2)
Where the conversion matrix J(¢) is:
cos¢p —sing 0
J(p) = |sing cosyp O],
0 0 1
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The differential equation of the heading is shown as:
b=r, €))
We define new state vector X = [¢.r]" . where ¢ represents the yaw angle and r represents the yaw

rate. So the vessel heading system is described as;
, 0 1 0
X)) = [ JX(z‘) +[ JW(t) . €Y
0 0 1

The observation equation is written as:
Z(H) =11 01X +V). (5)
Where W(¢) is the process noise vector, and V() is the measurement noise vector.
Considering the simulation system, the sampling period is set to T = 0.1 s, and then the system mod-
els (4) and (5) in discrete-time equivalent form leads to
X(k+1) = ®X (k) +TW(k) , (6)
Z(k) = HX (k) +V (k). D)
Where@ =[1 0.1 0 1]J.r=1[0 0.1]J,H=1[0 1].
In Eq. (6) and Eq. (7), both the vectors W(k) and V(%) are zero-mean Gaussian white sequences hav-
ing zero cross correlation with each other:
E[W, 1= 0,E[WW = 0.5,
E[V,]= 0.E[V,V] ]= R.d:,
EwW,V/ ]1=0
Where Q, is the process noise covariance matrix, and R, is the measurement noise covariance matrix.
1.2 Fuzzy adaptive unscented Kalman filter
1.2.1 Unscented Kalman filter
The unscented Kalman filter(UKF) is a recursive estimator based on the optimal Gaussian approxi-
mate Kalman filter framework. A nonlinear dynamic system is defined by Eq. (6) and Eq. (7), the UKF
algorithm is summarized™*,
+ Initialization: X, = E[X,],P, = E[(X, —X,) (X, —X)"]
For:k=1,+,00,
1) Calculate sigma-points:
i =X 10i =0, (8

Evr =X + (VT OP DT vi =1, , (9
Evn =X — (VTP D vi=n+1,-.2n. (10)

Where A = n(a* —1),0 << ¢ << 1 and « should ideally be a small number to avoid sampling non-local effects
when the nonlinearities are strong.

2) Time-update equations:

v = D& 1) s 1D
Xier = iwfmgi,mk—l ’ (12)
i=0
Zi./s\k*l - H(gi.k\kﬂ) . (13)
Zip, = iw;mz,,k‘k,l vi=0,.2n. (14)
i=0
Where W™ = W = Z(nlﬁ

3) Measurement-update equations:
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Ak:Zk_ZMkl s (15)
Pk =1 EW,(‘{) [gz.k\kﬂ 7Xk\k71][€i.k\k71 7X/: kfl]T "‘I‘Qk—lI‘T ’ (16)
i=0
pP. = ZW;() [Zi-k\lefl _Zk\kfl][zi-k\kfl _Zk kﬂ]T +R, , 17
i=0
2n
P,. = EWE()[&.& 1 — X, kﬂ][zr.k\/sﬂ —Z kﬂ]T ’ (18)
i=0
K. =P.P_, (19
X/s - Xk\,{rfl +Kk(Zk 72/;‘,{'71) o (20)

1.2.2 Measurement noise covariance adjusting algorithm
The degree of divergence (DOD) parameters of the UKF for reflecting the change of measurements
can be determined. The DOD parameter 8(k) can be defined as the trace of innovation covariance matrix at
present epoch™” .
Bk) = AT(DAR) = tr(ARAT (k) , 2D
o) = DV AW | . (22)
i=1

Where m is the length of the time window and

A (k) is the filter residual.

If the mathematical model of the system

is accurate enough, the innovation sequence & =X, i=0
will be zero-mean white noise, and then g(k) &n=X (VI DP)L =L, n

. =X~V (AP i=ntl, 20
and p(k) will be close to zero. If these parame- S (Y 3 bl

éx,k\k—l :f( fx,k—l)

ters drift from zero for a long-time, then the N
kam :2 W(M)éx,k\k—l 5 Zx,k\k—lzh(fx,k\k—l)

measurement noise covariance matrix R(k)

. . 5 S -
will be adjusted. 2= W."Z 1415170, .28
n ‘
kam:; W(E)[éx,k\k—l-Xk\k—l][éx,k\k—l-Xk\k—l]T+FQk—1FT

The parameters (k) and p(k) are the in-

puts of a fuzzy inference system (FIS), and
the adjusting coefficient S(k) can be obtained
by the FIS, and then the R(%) will be adjus-
ted.

R(k) = S"(LR(E—1) . (23)

Where R(k) is the measurement noise covari-

2n ~ e
Pzz:; Wx(c)[Zx,k\k—l-Zk\k—l ] [Zx,k\k—l-Zk\k—l]T+ Rk

v

ance matrix at time # , and b is a factor for ad- P,;éWf”)[f,vk‘k,l-)?k‘k,l][Z,vk‘k,l-Z]‘k,,]T
justing the response rate. Kk:PHPZ;“

The proposed fuzzy UKF is shown in X=X, *K(Z-Z,.)
Fig. 2, where g(k) is denoted by B, and others P=P,-K.P.K;
are similar. STOP
1.2.3 Fuzzy logic system YEND

As discussed above, a FIS can be pro- Fig. 2 The flow chart of the proposed fuzzy adaptive UKF

posed for adjusting the measurement noise co-
variance. The fuzzy set of B(k) is {Z (zero), S (small), L (large)}, and the domain is [0 0.5]. The
fuzzy set of p(k) is {Z (zero),S (small), L (large)}, and the domain is [0 1]. The fuzzy set of S(k) is {D
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(decrease) , M (maintain), I (increase)}, and the domain is [0.7 1.3].

According to theoretical and empirical researches, the Tab.1 Rules of fuzzy control
definition of the fuzzy control rules is shown in Tab. 1. B . ) I
As discussed above, the fuzzy inference system has 0
been established. S M M 1
1.3 Measurement data quality control algorithm Z M M I
Based on the residual of the UKF, a data quality con- L D D D

trol algorithm is proposed. The data quality control function

is defined as:

q(k) = JAT(RAR) /tr(P.(R)) . 24

Measurement data quality control rules are defined as:

q(k) > T, , the measurement is bad.

q(k) << T , the measurement is good.

The threshold T, can be set based on the different accuracy requirements and the actual motion of the
system.
1.4 Subsystem fault detection algorithm

For the multi-sensor data fusion systems, filter algorithm must have a real-time fault detection meth-
od"*, In this paper, a fault detection algorithm is proposed based on the residual of the UKF. The fault
detection function a(k) is defined as:

| tr (U, (&) |

(k) = .
“ Ju(P_ (k)

(25)

Where U, (%) is the innovation of the UKF.
Two hypotheses are defined: no-fault ( H, ) and fault ( H, ) as:
Hy:a; (k) = 1
Hi:a; (k) # 1
Suppose e represents the preset deviation, a fault detection interval is defined as:
N=1[1—¢ 1+4¢]
If o; (k) & 2, the subsystem ¢ has a fault, and the innovation of the UKF is set to zero. If a; (k) € 2,
the subsystem ¢ has no fault, and the fusion are normal.
The fault factors M; (%) are defined as:
M; (k) = 1, no fault occurs,
M. (k) = 0, a fault occurs.

The fault factors will be applied to the fusion algorithm to realize faults isolation.
2 Hierarchical fusion algorithm

In general, the state covariances of the local filters are usually applied to calculate the weighted factors
for the global fusion, but only one parameter is difficult to reflect the true local filter performance. In or-
der to improve the fusion accuracy and fault-tolerance, this paper adopts two state parameters of the local
filter to realize two independent first-level fusions, and then the global integration for the first-level fusions
can be obtained. The algorithm increases small computation complexity, but it improves the fusion per-

formance. The proposed fusion algorithm is shown in Fig. 3.
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2.1 The first-level fusion algorithms

Assuming the state estimate X;(k) , the state covariance P;(k) , and the parameter §; (&) of the local
UKF 7 have been obtained. In this paper, the parameters P;(k) and 3 (k) are chosen for the first-level fu-
sions. Assuming the state estimates of the first-level fusions are XI, (k) , XI, (k) respectively, then the

first-level algorithms can be derived as below.

2.1.1 Fusion algorithm using parameter P, (k) first-level  second-level
This algorithm is widely used for multi-sen- z| ¢ P
sensor-| ! UZzy X, fusion
sor data fusion. The weighted factor & (%) can be 1 agg;‘_vle B 1 [y,
computed; X
N fusion[{
&) = ((1/tr(P(k))/ > (1/tr(P,(R))) . (26) .
— P fusion L
i=1 £ N
. sensor-|Z, uzzy
Where N is the number of sensors of the system. N | adaptive Xy =
. . UKF-N By
For the subsystem 7, assuming the state

estimates is X; (k) , the fault factor is M, (k) re- . . . . .
Fig. 3 The proposed hierarchical fusion algorithm
spectively, and then the state estimation XI, (k)

can be calculated:

N
XI, (k) = DM, (&)X, (k) . (27)
=1

2.1.2 Fusion algorithm using parameter 3, (k)
As parameter P;(k) , the parameter 8, (k) can also be applied to the fusion approaches. A fusion algo-
rithm based on the parameter 8; (k) can be built.

The weighted factor §;(£) can be calculated using 8, (k)

1
B (k)

Where N is the number of sensors of the system.

N
/AR . (28)
i=1

Similarly, the other state estimation XI, (k) can be calculated:

N
XI, (k) = > M, (5 ()X, (k) . (29)
i=1

Where X, (k) is the state estimate and M, (k) is the fault factor of the subsystem i , respectively,
2.2 The global fusion algorithm
The state estimates XI, (k) and XI, (k) of the hierarchical fusions have been obtained. The weighted
factors can be calculated using the covariance of these estimates for the second-level fusion. Assuming that
the state estimation of the global fusion is X(%) , the initialization X(0)is defined as:
X(0) = (XI, (1) +XI,(1))/2. (30)
According to the definition of covariance, the corresponding covariance o7 (k) can be calculated.
i (k) = [ XL (k) —XG—D]'[XL () —X(—1D] . (3D
Where: = 1,2, N , X(k— 1) is the state estimation of the system at time # — 1 , N is the number
of the first-level fusions.

The weighted factors @; (k) will be calculated:

N
w; (k) = ((1/0?(/@))/2(1/6?(&)) s (32)
i=1

The state estimate X (k) can be obtained:
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N
X(k) = Do, (XL, (k) . (33)

i1
Where N is the number of the first-level fusion.

3 Simulation experiments

Simulation experiments have been carried out to evaluate the performance of the proposed algorithm in
comparison with that of the other methods for multi-sensor fusion. Simulation experiment was conducted

by a semi-physical experiment system which is shown in Fig. 4.

By the experiment system, we can simulate the

station keeping and the tracking control of the DPS.
The data coming from the experiments which simula-
ting the station keeping and the tracking control of the
DPS are denoted by data_1, data_2, respectively. To
clearly show the simulation results, one part of the data
and one part of the simulation figures are only selected.

The initial values of the process noise covariance
matrix is set @, = [ 0. 4 ] and the measurement noise co-
variance matrix is set R, = [0.01]. The initial values

of the state X, and the estimation error covariance ma-

trix P, can be obtained by calculating the average of the
first five measurements. Fig. 4 The semi-physical simulation system
3.1 Simulation on the fuzzy adaptive UKF algorithm
3.1.1 Simulation on the adjusting measurement noise covariance

The simulation experiments have been performed to evaluate the performance of the proposed fuzzy a-
daptive UKF algorithm in comparison with that of the conventional UKF. Two algorithms are denoted by
alg-a and alg-b, respectively. The simulations using data_1 and data_2 are shown in Fig. 5 and Fig. 6.
The variablese , x and ¢t which are in the simulation figures represent fusion error, state estimate and time,

respectively, and this definition is also applicable to the following sections.

0.6
0.4
0.2

e/(°)

-0.2

0.4 . . . . .
100 150 200 250 300 350

t/s

Fig. 5 Comparison of two algorithms with data-1 Fig. 6 Comparison of two algorithms with data-2

The simulation of the algorithm alg-a is shown as dashed line, and the algorithm alg-b is shown as sol-
id line. In Fig. 5, when the motion of vessel changes sharply, the state estimation error for the algorithm
alg-a is smaller than that for the algorithm alg-b. When the motion of the vessel changes small, the per-

formance of the algorithm alg-a is not better than that of the algorithm alg-b, as shown in Fig. 6. It dem-
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onstrates that the algorithm for adaptively adjusting measurement noise covariance can apply to the envi-
ronment which the vessel motion changes sharply. On this situation, the measurement noise varies heavily
and the measurement noise covariance will be adjusted. When the motion of the vessel changes small, the
measurement noise will change little, so in this case the measurement noise covariance does not require ad-
justing frequently.

3.1.2 Simulation on the fault detection algorithm

To validate the performance of the proposed algo- 3
rithm for data quality control and subsystem fault de- 4
tection, the data_1 is added 1° arbitrarily and the ran- g 3
dom faults are set with the fault rate of 8. 3%. A single 2
sensor system is selected to evaluate the performance of al ‘ ‘ ‘ ‘ H
0 50 100 150 200 250 300

the proposed detection algorithm. "
S

The proposed detection algorithm is denoted by
. ) o ) Fig. 7 Simulation of the data quality
alg-1 which is shown as solid line, and the algorithm
control and fault detection algorithms
that the wild points will not be detected and the fault
sensor will be removed directly is denoted by alg-2
which is shown as dashed line. The simulation is shown in Fig. 7. The simulation result indicates that the
proposed data quality control and the subsystem fault detection approaches are effective.
3.2 Simulation on the multi-level fusions algorithm
To assess the performance of the proposed multi-level fusion algorithm, two fusion algorithms that are
based on the credibility of the UKF which will be evaluated by a fuzzy reasoning system"’ and the conven-
tional fusion algorithm using the state estimates error covariance are selected. These three algorithms are
denoted by alg-4, alg-5, alg-6, respectively. The simulations on them are shown as thick solid line, thin

solid line and dashed line. The simulation is shown in Fig. 8 and Fig. 9.

0.3 e 0.2
0.2 ] | ~oalg-S 0.1
A i -—alg-6
~ 0.1 i ~ 0
S o S 0.1
~0.1} -0.2f Vi
A/
02 s s s ‘ ‘ 03 ‘ ‘ s y s
100 105 110 115 120 125 130 50 §5 60 65 70 75 80
t/s t/s
Fig. 8 Comparison of three fusion Fig. 9 Comparison of three fusion
algorithms with data_1 algorithms with data_2

The simulation results indicate that the fusion error of the proposed algorithm is smaller than those of
the algorithm alg-6. The difference of the fusion error between alg-4 and alg-5 is not significant. This is
because both the approaches use two state parameters of the filter to perform the fusion. Although the two
methods are different, they both make full use of the more accurate performance of the filter for fusion, so
they all have higher fusion accuracy. However, the computational complexity of the algorithm alg-4 is
smaller than that of the algorithm alg-5, but it is somewhat larger than that of the conventional algorithm

with the state covariance matrices.
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4 Conclusions

In this paper a multi-sensor hierarchical fusion algorithm based on fuzzy adaptive UKF has been pres-
ented. The proposed algorithm improves the fusion accuracy and fault-tolerance.

A fuzzy adaptive UKF for the case of measurement malfunctions is developed. By the use of defined a-
daptive factor, faulty measurements are taken into consideration with small weight and the estimations are
corrected without affecting the characteristic of the accurate ones. The fuzzy adaptive UKF is performed
only in the case of malfunctions in the measurement system. According to the feature of the residual, the
data quality control and the subsystem fault detection approaches are also built. These algorithms will im-
prove the accuracy of the filter and fault-tolerance.

A hierarchical fusion algorithm has been proposed. This method will increase the virtual redundancy
of the system by the hierarchical fusions using several state parameters of the fuzzy adaptive UKF, so the
performance of the system will be improved.
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