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Low-rank constrained AVA attribute recovery for multi-trace prestack gathers
GAO Yang, SHI Xuewen, ZHANG Dongjun, LIU Xin, LUO Haoran, ZHOU Zhiwen
(Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China)

Abstract: With exploration targets shifting to deeper and more complex reservoirs, viscoelastic absorption becomes
more pronounced, causing amplitude loss and phase distortion in prestack data and degrading amplitude variation
with angle (AVA) analysis. We propose a low-rank-constrained AV A-attribute recovery method for multi-trace
prestack gathers. First, a nonstationary seismic data forward model was constructed to explicitly characterize the
spatially varying absorption and attenuation effects of viscoelastic media. Second, by leveraging the lateral coherence
of prestack gathers, a low-rank constraint term is formulated through a block Hankel matrix structure, and nuclear
norm regularization is combined to suppress noise and preserve spatial correlations. Finally, the alternating direction
method of multipliers ( ADMM) was employed to solve the convex optimization problem, achieving stable
compensation. Tests on synthetic data demonstrate that, compared to conventional methods, the proposed approach
effectively restores the energy of weak reflection events, recovers angle dependent amplitudes, reduces sensitivity to
inaccuracies in the quality factor, and improves noise robustness. Field applications further demonstrate enhanced
lateral continuity and clearer AV A responses under complex geology.
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Fig. 1 Ray-path schematic for incident angle gathers in a horizontally layered medium
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Fig. 3 Flowchart of low-rank block-group matrix construction
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Comparison of compensation results on synthetic data
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Fig. 9 Compensation results using different quality factor
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