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Abstract: To address the issue of near water surface penetration (NWSP) error affecting the precise determination of
sea surface position, this study proposes an airborne LiDAR bathymetric sea surface positioning determination
algorithm based on echo reconstruction to correct the sea surface position derived from echo data. A theoretical
analysis is conducted on the measurement errors for sea surface and seafloor points before and after the
improvement. Experimental results demonstrate that this algorithm reduces the average sea surface deviation by
approximately 20 cm, decreases NWSP errors by 40%-50%, and lowers the root mean square error (RMSE)
between seabed coordinates and single-beam data by 7.5%. This algorithm can effectively reduce NWSP errors and
significantly enhance the refined processing level of domestic airborne LiDAR bathymetric data.
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Fig. 10 Map of instantaneous sea surface position determination of two navigational zones

RE/m RZE/m
“ - v -1.0
O O
O | oL
™~ ™~
o0 oo
&y [o)}
o o
0.8 0.8
(=) [o)
g @ g«
£ ot -0.6 = 5 0.6
(o)} [o)} )
o o
-0.4 0.4
o 9
= <
[l o~
oo o0
Lo 4 [o)}
P | | | 0 P | | | 0
526 495 526 624 526 753 526 495 526 624 526 753
x/m x/m
(a) NWSPK iF Bif (b) NWSPILIF 5

B 11 MEX NWSP X ERIEEABRIRESGE

Fig. 11 Sea level error distribution before and after NWSP correction
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Table 1 Error analysis of 2 value of average sea surface point cloud from six navigation zones and three methods m
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