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摘 要:主动配电网中接入大量逆变型分布式电源(IIDG),改变了配电网结构。随着渗透率的逐渐增大,易导致固

有电流保护误动、拒动。本研究在考虑IIDG低电压穿越及其故障电流特性基础上,提出一种含IIDG的主动配电

网故障等效模型及求解方法。计及IIDG故障电流的非线性和压控特性,采用改进粒子群算法对故障模型迭代求

解;给出考虑IIDG接入后的电流保护整定方案。通过 MATLAB/Simulinnk建立含IIDG的主动配电系统,验证了

故障等效模型的正确性和改进求解算法的有效性,以及考虑IIDG接入后电流保护整定方案的合理性。
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Abstract:
 

The
 

connection
 

of
 

large-scale
 

inverter
 

interfaced
 

distributed
 

generators
 

(IIDG)
 

to
 

the
 

active
 

distribution
 

network
 

leads
 

to
 

the
 

change
 

of
 

the
 

distribution
 

network
 

structure
 

and
 

tends
 

to
 

produce
 

wrong
 

action
 

or
 

no
 

action
 

of
 

the
 

original
 

current
 

protection
 

device
 

as
 

the
 

permeability
 

increases.
 

Considering
 

IIDG
 

low-voltage
 

ride
 

through
 

and
 

fault
 

current
 

characteristics,
 

a
 

fault
 

equivalent
 

model
 

and
 

solution
 

method
 

of
 

the
 

active
 

distribution
 

network
 

with
 

IIDG
 

were
 

proposed.
 

Considering
 

the
 

nonlinear
 

and
 

voltage-control
 

characteristics
 

of
 

IIDG
 

fault
 

current,
 

particle
 

swarm
 

optimization
 

was
 

used
 

to
 

solve
 

the
 

fault
 

model
 

iteratively.
 

The
 

current
 

protection
 

setting
 

scheme
 

considering
 

IIDG
 

access
 

was
 

presented.
 

An
 

active
 

distribution
 

system
 

with
 

IIDG
 

was
 

established
 

by
 

using
 

MATLAB/Simulinnk
 

to
 

verify
 

the
 

correctness
 

of
 

the
 

fault
 

equivalent
 

model
 

and
 

the
 

effectiveness
 

of
 

the
 

improved
 

solution
 

algorithm,
 

as
 

well
 

as
 

the
 

rationality
 

of
 

the
 

current
 

protection
 

setting
 

scheme
 

considering
 

IIDG
 

access.
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主动配电网(active
 

distribution
 

network,ADN)具有较强的自我控制与管理技术,通过对内部可控资源

的合理管控,可实现清洁能源的高水平消纳,是未来配电网络发展的明确方向[1]。在ADN中,接入逆变型

分布式电源(inverter
 

interfaced
 

distributed
 

generator,IIDG)的容量及并网位置直接改变了原系统的供电结

构,对电能流向和水平产生影响。在系统发生故障时,短路电流易发生变化,可能引起原有保护的误动作、拒
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动作。因此,传统的阶段式电流保护在主动配电网中受到一定制约[2-4]。
文献[5]在优先确保继电保护装置可靠动作的前提下,分析了分布式电源(distributed

 

generator,DG)的
最大准入容量,表明受固有保护装置正确动作的影响配电系统对DG消纳水平较低;文献[6]通过在DG出

口与系统连接点之间装设故障限流装置,降低了DG向系统提供的故障电流,但限流器难以适应电力电子器

件的快速反应能力;文献[7]提供了一种利用母线和出线之间的故障分量电流相位确定故障方向的方法,但
要求配电系统至少有三条出线,适用范围较小;文献[8]通过分析短路电流与光伏电源输出功率的关系,对传

统电流保护整定方案进行修改,提高传统电流保护对光伏电源接入的适应性,但未考虑光伏电源低电压穿越

运行(low
 

voltage
 

ride
 

through,LVRT)时的情况;文献[9-11]利用IIDG的高可控性向系统注入附加谐波电

流,构建了新型保护判据,实现了故障线路有选择性地切除,但对IIDG的控制方式改动较大,同时需要采用

高性能的通讯装置,难以应用到现有配电网络;文献[12]将系统故障序分量和参考相量的相位进行对比,构
建了一种方向判据,可根据判据准确定位故障线路,并由此实现有选择性地切除故障线路,但该判据忽略了

分布式电源故障时的输出特性;文献[13]利用主动配电网的故障分量特征,提出一种基于正序故障分量的纵

联保护方法,但需要借助通信网络,对保护配置改动较大,且对计算速度要求较高;文献[14-15]将差动保护

应用到有源配电网,理论上具有绝对的选择性,但需要对保护装置进行大规模的改造升级,经济性较差;文献

[16-18]利用配电监控单元实时掌握原系统和IIDG运行情况,并根据分布式电源的故障模型在线调整电流

保护的定值,但对数据传输以及计算速度的要求较高。
针对上述情况,本研究首先根据IIDG的LVRT控制流程,得到IIDG在系统故障时的输出特性,进而得

出含IIDG主动配电网的故障等效模型;然后结合IIDG输出短路电流的非线性和压控特性,采用改进的粒

子群优化(particle
 

swarm
 

optimization,PSO)算法对故障模型进行迭代求解,并给出考虑IIDG并网后的电

流保护整定方案;最后,通过 MATLAB/Simulinnk建立含IIDG的主动配电系统,仿真验证故障等效模型的

正确性和求解算法的准确性,以及考虑IIDG接入后电流保护整定方案的有效性,实现含IIDG的主动配电

网故障参数精确计算。

1 IIDG输出特性和LVRT控制策略

图1 IIDG并网等效示意图

Fig.
 

1 Equivalent
 

structure
 

diagram
 

of
 

IIDG
 

grid-connected

  以基于PQ控制的光伏电源为例,研
究IIDG的输出特性和LVRT控制策略。

IIDG并网等效模型如图1所示。图1中,

PV表示光伏板电源,Udc 为IIDG直流侧

母线电压;C为电容;R、L分别为IIDG交

流侧滤波装置的等效电阻和电感;Uabc、

Iabc 分别为IIDG交流侧三相电压和电流;

EA、EB、EC 分别为IIDG并网处系统三相

电压。
使用dq旋转坐标系,并将q轴电压分量设置为0时,可以得到IIDG的输出功率:

P=
3
2
(udid+uqiq)=

3
2udid,

Q=
3
2
(udid-udiq)=-

3
2udiq。

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁

 

(1)

式中:P、Q 分别为IIDG向系统传输的有功功率、无功功率;ud、uq 为IIDG的d、q 轴电压;id、iq 分别为

IIDG的d、q轴电流。
根据国标对无功电流支撑的要求[19],以及并网逆变器对最大输出电流的限制,可得到系统故障时IIDG

进入LVRT后的输出方程:

·321·
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IIIDG=
iq=min(K×(0.9-

UPCC

UN
)IN,Imax),

id=min(id_ref, (I2max-i2q))。

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (2)

式中:UPCC 为IIDG并网处实际电压;K 为无功电流补偿系数,本研究取2;UN、IN 分别为IIDG的额定电压、
电流;Imax 为IIDG允许的最大输出电流有效值,本研究取1.5IN;id_ref为d 轴电流参考值。

2 主动配电网故障等效模型及求解方法

2.1 故障等效模型

以图2含IIDG的典型主动配电系统为例,分析IIDG接入后不同位置发生故障时的等效模型。图2
中,1~7为电路保护,f1~f4处不同位置发生对称短路时具有相似的故障模型,均可简化为图3所示的电路

结构。图3中,Es 为系统电源;Zs 为系统阻抗;Ik1 为Es 提供的短路电流;Ik2 为IIDG提供的短路电流;If

为故障点短路电流;Z1~Z3 为相应线路的阻抗,受故障点变化而变化。

图2 IIDG接入主动配电网示意图

Fig.
 

2 Schematic
 

diagram
 

of
 

IIDG
 

connecting
 

to
 

active
 

distribution
 

network

图3 主动配电网短路故障等效电路图

Fig.
 

3 Fault
 

equivalent
 

circuit
 

diagram
 

of
 

ADN

  假设f3处发生三相短路故障,通过母线A、C处的节点方程可以得:

(1
Zs
+

1
ZAL2+Zload2

+
1

ZAC
)UA-

1
ZAC

UC=
Es

Zs
,

-
1

ZAC
UA+(

1
ZAC

+
1

ZCD+αZDE
)UC=IIIDG,

IIIDG=f(UPCC)。

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(3)

式中:ZAL2 为母线A到馈线2负荷的线路阻抗;Zload1 为馈线1的负载等效阻抗;ZAC 为线路AC阻抗;ZCD

为线路CD阻抗;ZDE 为线路DE阻抗;UA、UC 分别为母线A、C电压;α为故障距离百分数,即故障点距线路

首端长度与线路全长之比;f()为IIDG在系统故障期间输出的短路电流与其端口电压的映射关系,如式

(2)所示。通过求解式(3),可得到f3处发生三相短路故障时系统的故障参数。
当f3处发生两相短路时,受正序电压控制策略的影响,IIDG只输出三相对称的故障电流,即IIDG不应

出现在负序与零序网络中[20-21]。此时,系统的正序与负序网络图分别如图4(a)与图4(b)所示。图4中,

Uf(1)为f3处故障正序电压,Uf(2)为f3处故障负序电压,ZEL1 为母线E到馈线1负荷的线路阻抗,Zload2 为馈

线2的负载等效阻抗。

图4 主动配电网两相短路时故障序网图

Fig.
 

4 Fault
 

sequence
 

diagrams
 

of
 

ADN
 

when
 

two-phase
 

fault
 

occurs

·421·
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  与式(3)类似,通过求解复合序网图的节点电压方程,可得到f3处发生两相短路时的系统故障参数。对

于含有多个IIDG的主动配电网,其节点求解方程同式(3)类似,用矩阵表示:

YU=AIIIDG+I,

IIIDG,i=f(UPCC,i)。 (4)

式中:U 为故障等效电路节点电压矩阵;Y 为主动配电网故障等效电路的节点导纳矩阵;A 为IIDG与故障等

效电路节点之间的关联矩阵;IIIDG 为IIDG输出电流矩阵;I为Es 向系统提供的故障电流矩阵。
对式(4)求解时,需考虑所有IIDG的非线性输出特性。各母线电压在系统故障期间差异较大,常用的

数学求解方法对迭代初始值敏感,如初始值选择不当会难以收敛。PSO算法是一种通过逐次迭代求解问题

的优化算法,待求解的各维度在迭代开始时均被设置成一群自由粒子(随机解),因此求解过程中对解向量的

初始值不敏感[22]。同其他算法相比,PSO算法具有概念清晰、编程简单、参数较少、收敛快和通用性强等优

点,且不依赖于问题信息,适合于实值型处理,对初始值和内存要求低,能够处理高维度问题,对高维空间优

化问题具有较好的适应性。尽管PSO算法存在早熟收敛、迭代过程受参数影响等缺点,但通过改进或优化,
在神经网络训练、函数优化等领域仍被广泛应用。因此,本研究选用PSO算法迭代求解故障等效模型。

2.2 基于改进PSO算法的故障模型求解方法

选取式(4)中每个方程的绝对值之和作为PSO算法的适应度函数h(xi)。当h(xi)小于设定的收敛精

度ε时,便可认为此时的解为方程组的近似解。同时,为了克服算法早熟问题、增强其寻优能力,本研究从以

下几个方面对PSO算法进行改进。

1)
 

采用Circle映射代替随机数生成器[23],生成分布更加均匀、多样的初始种群。其计算式为:

xi+1=mod(xi+0.2-
0.5
2πsin

(2πxi),1)。 (5)

式中:xi、xi+1 分别为第i
 

和i+1个序列数;mod(a,b)表示a 对b进行取余运算。

2)
 

采用非线性递减的惯性权重w,以增加在求解过程前期的全局和后期的局部搜索能力,

w=(wmax-wmin-d1)e
1/(1+d2×k/Kmax)。 (6)

式中:wmax、wmin 分别为惯性权重的最大值与最小值;d1、d2 为影响权重递减快慢的常数;k 为当前迭代次

数;Kmax 为最大迭代次数。

3)
 

使用余弦函数分别构造非线性的异步学习因子[24]。为加强局部搜索能力,在求解前期将个体学习

因子c1 取较大值,群体学习因子c2 取较小值,在迭代后期采用较小的c1 和较大的c2。

c1=2 cos(
π
2×

k
Kmax

) ,

c2=2 1- cos(
π
2×

k
Kmax

) 。

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

 

(7)

4)
 

自适应速度与位置更新策略。利用适应度值区别粒子在下一次迭代中的速度变化方向,当本次寻优

结果优于上一次时,依靠粒子自身惯性运动,反之,按照基础粒子群算法更新速度和位置。

vk+1
id =

wvk
id,

 

h(xk
i)<h(xk-1

i );

wvk
id+c1r1(pbest,id-xk

id)+c2r2(gbest,d-xk
id),

 

h(xk
i)≥h(xk-1

i )。 (8)

式中:h(xi)
 

为粒子xi 的适应度值;vk
id、vk+1

id 分别为第k代和第k+1代种群粒子i的第d 维速度;xk
id 为第

k代种群粒子i的d 维位置;r1、r2 为[0,1]区间的随机数,增加搜索的随机性;c1、c2 分别为个体和群体学习

因子;pbest,id 为粒子i迭代中最好的d 维位置;gbest,d 为整个种群迭代中最好的d 维位置。
引入自适应参数η调整粒子的位置更新算式,以保证粒子前期寻优的快速性和优化后期的不发散性。

xk+1
id =xk

id+ηkvk
id,

ηk=
(ηmax-ηmin)

1+e
∂(k-Kmax/2)

+ηmin。

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

 

(9)
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式中:ηk 为第k次位置调整参数;ηmax、ηmin 分别表示η 取最大值与最小值,一般取ηmax∈[1.0,1.8],ηmin∈
[0.4,0.8];∂为影响η变化快慢的参数,一般取∂

 

∈[0.005,0.015][25]。

3 考虑IIDG接入后的电流保护整定方案

以图2中电路保护2、3为例,通过式(4)求解可得母线D发生三相短路时的短路参数。其中,母线C电

压为:

UC=
Es+IIIDG(Zs+ZAB+ZBC)

Zs+ZAB+ZBC+ZCD

 ZCD。 (10)

电路保护3的短路电流为:

I(3)
CB3=

UC

ZCD
=
Es+IIIDG(Zs+ZAB+ZBC)

Zs+ZAB+ZBC+ZCD
。 (11)

电路保护2的短路电流为:

I(3)
CB2=

Es-UC

Zs+ZAC
=

Es-IIIDGZCD

Zs+ZAB+ZBC+ZCD
。 (12)

由式(11)、式(12)可以看出,母线D发生故障时,受IIDG输出短路电流IIIDG 影响,保护3的短路电流

I(3)
CB3 增大,易导致保护3失去选择性,I(3)

CB2 相应减小,使保护2的灵敏度变低。

同理,相邻馈线F母线发生三相短路时,流过电路保护6的短路电流为:

I(3)
CB6=

UA

ZAF
=

Es

ZAF+Zs
+

IIIDGZs

ZAF+Zs
。 (13)

由式(13)可以看出,母线F发生故障时,受IIDG输出短路电流IIIDG 影响,流过保护6的短路电流也会

变大,但受IIDG“弱馈”特性影响,I(3)
CB6 增幅不大,固有保护策略一般仍能满足要求。

根据上述故障特征,本研究提出以下计及IIDG输出特性的电流保护整定方案。

1)
 

对于电路保护3的电流保护Ⅰ段,其定值按照躲过IIDG接入后的母线D发生三相短路时,流过其自

身的最大短路电流整定:

IⅠ
set.3=KⅠ

relI
(3)
f.D.max。 (14)

式中:IⅠ
set.3 为电路保护3的Ⅰ段整定值;KⅠ

rel为保护Ⅰ段的可靠系数,取1.2[26];I(3)
f.D.max 为母线D发生故障

时的最大短路电流。

2)
 

对于电路保护3的电流保护Ⅱ段,应优先与保护4的电流Ⅰ段配合进行整定,若灵敏度不满足要求,

可与电路保护4的电流Ⅱ段配合进行整定:

IⅡ
set.3=KⅡ

relIⅠ
set.4,

IⅡ
set.3=KⅡ

relIⅡ
set.4。 

 

(15)

式中:IⅡ
set.3、IⅠ

set.4 和IⅡ
set.4 分别为电路保护3的Ⅱ段、电路保护4的Ⅰ段和Ⅱ段电流整定值;KⅡ

rel为Ⅱ段电路

保护的可靠系数,取1.1[26]。

3)
 

对于电路保护2的电流Ⅱ段应与保护3的电流Ⅰ段进行配合,并考虑IIDG输出短路电流的影响,

IⅡ
set.2=

KⅡ
rel

Kbr
IⅠ
set.3,

Kbr=
IⅠ
set.3

I(3)
f.CB2

。

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

(16)

式中:IⅡ
set.2 为电路保护2的Ⅱ段电流整定值;Kbr 为考虑IIDG影响的分支系数,为了保证电路保护的选择

性,应取可能存在的最小值1;I(3)
f.CB2 为整定配合点故障时保护2的故障电流。

4)
 

对于电路保护3,其电流Ⅲ段保护仍按躲过其自身的最大负荷电流整定:
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图5 主动配电网故障模型求解及保护整定方案流程

Fig.
 

5 Fault
 

model
 

solving
 

and
 

protection
 

setting
 

scheme
 

flow
 

of
 

ADN

图6 含IIDG的主动配电系统

Fig.
 

6 Active
 

distribution
 

system
 

with
 

IIDG

IⅢ
set.3=

KⅢ
relKMS

Kre
IL3.max。 (17)

式中:IⅢ
set.3 表示电路保护3的Ⅲ段电流整定

值;KⅢ
rel 为相应的可靠系数,本研究取1.15;

KMS 为考虑电机负载启动时的系数,与系统实

际负荷结构相关,本研究取1.5;Kre 为继电器

返回系数,取0.95;IL3.max 表示电路保护3的最

大负荷电流。
对于图2中的保护1、4、5、6和7,其阶段

式电流保护整定原则和保护3相同,不再叙述。
基于改进粒子群搜索算法的主动配电网故障模

型求解及整定方案流程如图5所示。

4 案例分析

4.1 故障模型正确性与求解方法准确性

为验证上述所提故障等效模型和电流保护

方案的正确性,在 Matlab/Simulink中建立了

含IIDG的主动配电系统,其结构如图6所示。
其中,CB1~CB9为对应线路首段保护装置,

IIDG1与IIDG3的额定容均为1
 

MVA。该系

统额定电压为10.5
 

kV,系统最小等值阻抗

j0.4
 

Ω,最大等值阻抗j0.7
 

Ω,母线 A~H、馈
线1和馈线2负荷均为0.5

 

MVA,功率因数

0.85。各段线路均使用同规格的LGJ-95型架

空线路,每千米阻抗Z=0.343+j0.35
 

Ω。所

使用的粒子群算法的粒子数为50,最大迭代次

数为100,允许收敛精度ε=10-5。

IIDG未接入时,各段线路参数与CB1~
CB9的整定值如表1所示。其中,CB5与CB9
直接与负载相连,仅配置电流Ⅲ段保护,CB4与

CB8因靠近线路末端且下游保护未配置电流Ⅰ
段或Ⅱ段,其电流Ⅱ段保护按最小运行方式下

1.3倍灵敏度整定;EL1、EH2分别为母线E到

馈线1和母线H到馈线2的负荷线路。
为验证本研究提出的主动配电网故障等效

模型及求解方法的准确性,以图6中母线E发

生三相金属性短路,IIDG2的额定容量为2
 

MVA为例,将PSO算法求解结果与仿真结果进行对比验证。
此时,IIDG2输出的电压、电流及d、q轴电流波形如图7所示。

由图7可知,系统在0.15
 

s发生故障后,IIDG2的d、q轴电流按照LVRT控制流程发生变化,0.45
 

s故

障切除后,又恢复到初始状态。此时,三相短路参数的仿真结果与PSO计算结果如表2所示。表2中,Ifa
为故障点A相电流;Ufa.IIDG1、Ufa.IIDG2、Ufa.IIDG3 分别为IIDG1~IIDG3的A相故障电压;Ifa.IIDG1、Ifa.IIDG2、Ifa.IIDG3
分别为IIDG1~IIDG3的A相故障电流;id.IIDG1、id.IIDG2、id.IIDG3 分别为IIDG1~IIDG3的d 轴电流;iq.IIDG1、
iq.IIDG2、iq.IIDG3 分别为IIDG1~IIDG3的q轴电流。
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表1 IIDG未接入时系统参数与电路保护配置情况

Table
 

1 System
 

parameters
 

and
 

circuit
 

protection
 

configurations
 

when
 

IIDG
 

access
 

is
 

not
 

considered

线路名称 长度/km 阻抗/Ω 保护编号 IⅠ
set/kA IⅡ

set/kA IⅢ
set/kA

AB 2 0.686+j0.700 CB1 5.612 0.577 0.262

BC 3 1.029+j1.050 CB2 2.645 0.524 0.210

CD 5 1.715+j1.750 CB3 1.400 0.476 0.157

DE 8 2.744+j2.800 CB4 0.798 0.433 0.105

EL1 2 0.686+j0.700 CB5 — — 0.052

AF 2 0.686+j0.700 CB6 5.612 0.826 0.210

FG 3 1.029+j1.050 CB7 2.645 0.751 0.157

GH 6 2.058+j2.100 CB8 1.280 0.683 0.105

HL2 2 0.686+j0.700 CB9 — — 0.052

图7 IIDG2输出电压、电流和d、q电流波形

Fig.
 

7 IIDG2
 

voltage,
 

current
 

and
 

d、q
 

waveforms

表2 三相短路故障仿真结果与PSO计算结果

Table
 

2 Simulation
 

results
 

and
 

PSO
 

calculation
 

results
 

of
 

three-phase
 

short-circuit
 

fault

故障参数 仿真值(相位) PSO计算值(相位) 幅值相对误差/% 相位相对误差/%
Ifa/kA 0.728(∠-48.20°) 0.731(∠-49.17°) 0.41 2.01

Ufa.IIDG1/kV 5.130(∠-2.40°) 5.112(∠-2.31°) 0.35 3.89
Ifa.IIDG1/kA 0.065(∠-3.61°) 0.066(∠-3.49°) 0.57 3.43
id.IIDG1/A 64.985 65.967 1.51 —

iq.IIDG1/A -1.373 -1.359 1.03 —

Ufa.IIDG2/kV 2.845(∠1.10°) 2.853(∠1.13°) 0.28 2.73
Ifa.IIDG2/kA 0.174(∠-33.70°) 0.173(∠-34.19°) 0.58 1.45
id.IIDG2/A 146.896 145.473 0.97 —

iq.IIDG2/A -94.747 -93.781 1.03 —

Ufa.IIDG3/kV 5.580(∠-2.51°) 5.557(∠-2.46°) 0.42 2.03
Ifa.IIDG3/kA 0.059(∠-2.51°) 0.060(∠-2.46°) 1.69 2.03
id.IIDG3/A 59.491 60.497 1.69 —

iq.IIDG3/A 0 0 0 —

  从表2可以看出,使用本研究提出的故障模型和求解算法计算的短路参数与Simulink仿真结果基本一

致。短路电流相对误差为0.41%,相位相对误差2.01%;IIDG2端口电压相对误差为0.28%,相位相对误差

因数值较小而略大,但其绝对误差仅为0.03°;IIDG2输出的故障电流相对误差为0.58%,相位相对误差
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1.45%;d、q轴电流误差分别为0.97%和1.03%;IIDG1与IIDG3的故障数据误差与IIDG2类似,幅值误差

在1%左右,相位误差因数据较小而略大,但绝对误差均很小。
同理,在母线E设置BC两相金属性短路进行仿真验证,IIDG2输出的电压、电流及d、q 轴电流波形如

图8所示。

图8 IIDG2输出电压、电流和d、q电流波形

Fig.
 

8 IIDG2
 

voltage,
 

current
 

and
 

d、q
 

waveforms

  由图8可知,系统在0.15
 

s发生BC两相短路后,三相电压明显不对称,但IIDG2受正序电压控制影响,
仍然输出三相对称的故障电流,且d、q轴电流按照LVRT控制流程发生变化。此时仿真结果与PSO计算

结果对比如表3所示。
表3 两相短路故障仿真结果与PSO计算结果

 

Table
 

3 Simulation
 

results
 

and
 

PSO
 

calculation
 

results
 

of
 

two-phase
 

short-circuit
 

fault

故障参数 仿真值(相位) PSO计算值(相位) 幅值相对误差/% 相位相对误差/%

Ifb/kA 0.614(∠-138.40°) 0.619(∠-140.14°) 0.87 1.26
Ufa(1).IIDG1/kV 5.538(∠-0.51°) 5.592(∠-0.53°) 0.98 3.92
Ifa.IIDG1/kA 0.061(∠-0.51°) 0.062(∠-0.53°) 1.65 3.92
id.IIDG1/A 60.537 61.529 1.65 —

iq.IIDG1/A 0 0 0.00 —

Ufa(1).IIDG2/kV 4.423(∠2.75°) 4.456(∠2.81°) 0.75 2.80
Ifa.IIDG2/kA 0.154(∠-8.93°) 0.157(∠-9.31°) 1.95 4.26
id.IIDG2/A 150.811 153.501 1.78 —

iq.IIDG2/A -31.177 -32.963 5.73 —

Ufa(1).IIDG3/kV 5.694(∠-0.95°) 5.761(∠-0.98°) 1.18 3.16
Ifa.IIDG3/kA 0.059(∠-0.95°) 0.061(∠-1.06°) 3.39 3.77
id.IIDG3/A 58.685 60.674 3.39 —

iq.IIDG3/A 0 0 0 —

  由表3可知,母线E发生两相短路时的故障仿真数据与PSO计算得到的故障数据也基本一致,部分故

障数据因其基础数值较小,导致相对误差略大,但绝对误差很小。综合以上故障测试结果,验证了本研究提

出的故障等效模型的正确性以及求解方法的准确性,可以用于含IIDG配电系统的保护整定计算工作。

4.2 电流保护整定结果与校验

当IIDG1、IIDG2与IIDG3的并网额定容量均为1
 

MVA时,根据本研究所提的故障模型及求解方法,
图6中考虑IIDG接入后各保护的整定值如表4所示。此时,各保护的保护范围或灵敏度如表5所示,其中
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lmin 与lmax 表示电流I段最小与最大保护范围。从表5可以看出,各段的保护范围或灵敏度均满足要求。

表4 考虑IIDG接入后的电流保护位置及整定值

Table
 

4 Current
 

protection
 

position
 

and
 

setting
 

values
 

after
 

IIDG
 

access
 

are
 

considered

线路名称 长度/km 阻抗/Ω 保护编号 IⅠ
set/kA IⅡ

set/kA IⅢ
set/kA

AB 2 0.686+j0.700 CB1 5.639 0.583 0.262

BC 3 1.029+j1.050 CB2 2.690 0.530 0.210

CD 5 1.715+j1.750 CB3 1.415 0.482 0.157

DE 8 2.744+j2.800 CB4 0.863 0.438 0.105

EL1 2 0.686+j0.700 CB5 — — 0.052

AF 2 0.686+j0.700 CB6 5.647 0.832 0.210

FG 3 1.029+j1.050 CB7 2.658 0.756 0.157

GH 6 2.058+j2.100 CB8 1.328 0.687 0.105

HL2 2 0.686+j0.700 CB9 — — 0.052

表5 各段保护范围或灵敏度

Table
 

5 Protection
 

range
 

or
 

sensitivity
 

of
 

each
 

segment

线路名称 保护编号 Ⅰ段lmin/% Ⅰ段lmax/% Ⅱ段 Ⅲ段近后备 Ⅲ段远后备

AB CB1 29.124 76.952 5.683 12.647 6.612

BC CB2 28.063 68.507 3.283 8.303 4.583

CD CB3 27.915 65.275 1.973 6.051 3.506

DE CB4 18.872 61.986 1.300 5.430 4.906

EL1 CB5 — — — 9.811 —

AF CB6 28.856 77.098 4.037 16.029 8.284

FG CB7 27.541 67.954 2.296 11.045 5.593

GH CB8 31.895 67.465 1.300 8.523 7.301

HL2 CB9 — — — 14.602 —

  以图6中母线E发生三相金属性短路为例,分别用基础的粒子群算法以及其他常用优化算法与本研究

改进后的粒子群算法对故障模型进行求解,并对比其收敛过程,对比结果如表6所示。从表6可以看出,改
进PSO算法初始适应度值较小,初始种群分布合理,收敛迭代次数也小于基础PSO与其他常用优化算法。

同时,各算法在求解过程收敛曲线对比如图9所示,可以看出,改进后的算法具有更好的搜索能力,收敛

速度也优于改进前粒子群算法和其他常用优化算法,验证了改进后PSO算法对故障模型求解的有效性。

表6 算法收敛情况对比

Table
 

6 Comparison
 

of
 

algorithm
 

convergence

算法名称 初始适应度值 收敛迭代次数 收敛精度 100次迭代适应度

蚁群算法 3
 

240 34 1.423×10-6 4.629×10-9

遗传算法 4
 

038 47 9.774×10-6 1.210×10-9

模拟退火算法 4
 

107 54 2.248×10-6 3.885×10-8

改进前PSO算法 3
 

621 29 1.815×10-6 6.635×10-13

布谷鸟算法 4
 

027 23 8.479×10-6 1.214×10-12

改进PSO算法 3
 

225 16 1.677×10-6 1.663×10-13
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图9 算法收敛曲线对比

Fig.
 

9 Comparison
 

of
 

algorithm
 

convergence
 

curves

5 结论

本研究提出一种计及IIDG的LVRT控制流

程的主动配电网故障等效模型,采用改进粒子群

算法对故障模型进行迭代求解,并给出考虑IIDG
接入后的电流保护整定方案,得到以下结论。

1)
 

故障等效模型考虑IIDG的LVRT控制

策略和压控特性,使用迭代方法求解,仿真验证了

故障等效模型的正确性和求解方法的准确性。

2)
 

IIDG进入LVRT模式后具有“弱馈”特
性,通过对故障模型的迭代求解,实现了故障参数

的精确计算,为电流保护整定与校验提供依据。

3)
 

改进后PSO算法对主动配电网故障等效

模型具有更优的求解能力和收敛速度。
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