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摘 要:为实现对非线性多模态过程的更有效监测,本研究提出一种基于双近邻标准化的局部离群因子故障检测

方法(DLNS-LOF)。该方法首先通过双近邻标准化(DLNS)技术,利用嵌套近邻集的均值和标准差对每个样本进

行标准化处理,然后再利用局部离群因子(LOF)方法对过程数据进行故障检测。DLNS能够将非线性多模态过程

数据转化为近似服从标准正态分布的单模态数据,并有效分离在线故障样本,从而显著提升LOF方法的故障检测

性能。通过数值模拟与青霉素发酵过程的实验验证表明,DLNS-LOF方法具有良好的检测性能。
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Abstract:
 

To
 

achieve
 

effective
 

monitoring
 

of
 

nonlinear
 

multimodal
 

processes,
 

this
 

paper
 

proposed
 

a
 

fault
 

detection
 

method
 

based
 

on
 

the
 

double
 

local
 

neighborhood
 

standardization
 

and
 

local
 

outlier
 

factor
 

(DLNS-LOF).
 

Firstly,
 

the
 

DLNS
 

technology
 

was
 

adopted
 

to
 

standardize
 

each
 

sample
 

by
 

using
 

the
 

mean
 

value
 

and
 

standard
 

deviation
 

of
 

the
 

embedded
 

local
 

neighborhood
 

set.
 

Secondly,
 

the
 

LOF
 

method
 

was
 

used
 

to
 

detect
 

faults
 

in
 

the
 

process
 

data.
 

DLNS
 

can
 

transform
 

multimodal
 

process
 

data
 

with
 

nonlinear
 

characteristics
 

into
 

single-mode
 

data
 

that
 

approximately
 

obeys
 

a
 

standard
 

normal
 

distribution
 

and
 

separates
 

online
 

fault
 

samples,
 

significantly
 

improving
 

the
 

fault
 

detection
 

capability
 

of
 

the
 

LOF
 

method.
   

The
 

experiments
 

on
 

a
 

numerical
 

simulation
 

process
 

and
 

the
 

penicillin
 

fermentation
 

process
 

show
 

that
 

the
 

DLNS-LOF
 

method
 

has
 

a
 

good
 

performance.
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double
 

local
 

neighborhood
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factor;
 

multimodal;
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fault
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尽早发现工业生产过程中的异常状况对保障系统的安全稳定运行具有关键作用。近年来,多元统计过

程监测(multivariate
 

statistical
 

process
 

monitoring,
 

MSPM)技术作为一种数据驱动类的故障检测方法,因
其高效性和强适应性得到广泛应用[1-3]。其中,主成分分析(principal

 

component
 

analysis,
 

PCA)和偏最小
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二乘(partial
 

least
 

squares,
 

PLS)是两种经典故障检测方法,分别利用霍特林T2 和平方预测误差(squared
 

prediction
 

error,SPE)统计量对主元空间和残差空间进行异常监测。
实际工业生产过程常呈现非线性与多模态特性,这也使得故障检测更为困难。PCA与PLS方法在故

障检测中构建T2 和SPE统计量时,均假设过程数据服从单模态多元高斯分布,但若实际数据偏离该假设,
其检测性能将受到限制。为此,研究人员提出多种改进策略。针对非线性问题,一些基于核函数的扩展方法

被提出,如核主成分分析法[4]、关键性能指标式核偏最小二乘法[5]和高效核偏最小二乘法[6]等,均借助核映

射将原始非线性数据投影到高维特征空间,以实现线性可分,但该类方法未考虑多模态情形。多模态特征是

指生产过程在不同运行区域下产生具有不同分布特性的数据,常与非线性并存。为此,He等[7]提出基于k
近邻(k

 

nearest
 

neighbor,
 

kNN)的故障检测方法,但该方法对疏密程度具有显著差异的多模态过程进行故

障检测时存在局限性。冯立伟等[8]进一步提出基于标准距离k近邻(standard
 

distance
 

k
 

nearest
 

neighbor,
 

SD-kNN)的故障检测方法,通过构建标准距离统一不同模态样本间近邻距离的量纲,克服疏密程度的影响。

Breunig等[9]提出基于局部离群因子(local
 

outlier
 

factor,
 

LOF)的故障检测方法,Ma等[10]在其基础上提出

基于马氏距离局部离群因子的故障检测方法。LOF通过利用待测样本的近邻样本与其自身的相对密度构

建统计量,能够对非线性的多模态过程进行故障检测。但上述kNN和LOF的扩展方法在处理微弱型故障

时敏感度不高。李元等[11]提出基于局部近邻标准化的k 近邻(local
 

neighborhood
 

standardization
 

and
 

k
 

nearest
 

neighbor,
 

LNS-kNN)故障检测方法,通过LNS技术预处理数据以削弱非线性和多模态特征,并分

离故障样本。但LNS技术在处理部分位于两个模态之间的故障样本时,由于近邻样本可能来自不同模态,
因此故障样本可能位于其近邻样本的中心位置,经LNS处理后会将该部分故障样本混入正常样本中,影响

检测准确性。
为实现对非线性多模态过程更有效地监测,本研究提出一种基于双近邻标准化的局部离群因子(double

 

local
 

neighborhood
 

standardization
 

and
 

local
 

outlier
 

factor,
 

DLNS-LOF)故障检测方法。DLNS技术通过嵌

套近邻集的均值与标准差对每个样本进行标准化,避免了LNS所用的近邻样本可能来自不同模态的问题,
从而有效防止模态交界处故障样本在标准化后被误判为正常样本的现象。此外,经DLNS处理后正常样本

聚集于原点附近,而故障样本则远离原点。LOF方法通过计算待测样本近邻的平均局部密度与其自身密度

之比构建统计量。正常样本因分布集中,其相对密度值在1附近小幅波动;故障样本偏离正常集群,其相对

密度值显著大于1。因此,结合DLNS预处理后,LOF能更有效识别故障样本。

1 局部离群因子

设有训练集X∈Rl×z,l和z分别表示样本和变量个数。下面以样本u 为例对LOF方法的计算步骤进

行说明。
首先,在X 中计算u 的前k 个近邻样本uf,f=1,2,…,k,并求出u 到其每个近邻样本的可达距离

Dk(u,uf):

Dk(u,uf)=max(dk(uf),d(u,uf))。 (1)
式中:dk(uf)是uf 到其第k近邻样本的距离,也称uf 的第k距离;d(u,uf)表示u 到uf 的欧式距离。

然后,计算u 的局部可达密度:

lrd(u)=
k

∑
k

f=1
Dk(u,uf)

。 (2)

最后,计算u 的局部离群因子:

LOF(u)=
1
k∑

k

f=1

lrd(uf)
lrd(u)

。 (3)

局部离群因子反映了近邻样本密度的均值与待测样本自身密度的比值。若待测样本是正常样本,其

LOF值在1附近小幅波动;若为故障样本,其离群程度越大,LOF的值越大。通过核密度估计技术可确定
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LOF的控制限,进而依据在线样本是否超出控制限判断过程是否发生故障。

2 双近邻标准化局部离群因子的故障检测

2.1 双近邻标准化

DLNS是一种在LNS基础上的改进方法[12]。LNS方法利用待测样本在训练集中近邻集的均值和标准

差对自身进行标准化。然而,当故障样本位于两个模态之间时,其在训练集中的近邻样本可能来自两个模

态,且近邻集的均值可能近似等于该故障样本的坐标,如图1所示。此时,标准化过程中的去均值操作会使

故障样本被移至原点附近,从而混入正常样本中,影响故障检测结果。DLNS采用双层近邻结构,首先确定

待测样本的近邻样本,接着利用每个近邻样本的近邻集的均值和标准差标准化自身,从而避免了标准化自身

的近邻样本来自不同模态的现象。最后,DLNS对每个嵌套近邻集标准化后的结果进行平均,以消除统计

波动。

图1 故障样本的近邻信息

Fig.
 

1 Neighbor
 

information
 

for
 

fault
 

samples

下面以样本u 为例对DLNS方法的计算

步骤进行说明。
首先,计算u 在训练集中的前k 个近邻样

本集N(u),并进一步计算每个近邻样本uf 的

前K 个近邻样本集N(uf):

N(u)= u1,u2,…,uk  , (4)

N(uf)= uf
1,uf

2,…,uf
K  。 (5)

式中:uf 表示u 的第f 近邻样本,f=1,2,…,

k;uf
j 表示uf 的第j 近邻样本,j=1,2,…,

K。需要注意的是,参数k 和K 的选取均不宜

过大。当参数最大为样本个数时,DLNS就退

化为了Z-score标准化,因此应选取较小的参

数值。
然后,求出 K 个近邻样本集N(uf)的均

值m(N(uf))和标准差s(N(uf)):

m(N(uf))=
1
K∑

K

j=1
uf

j, (6)

s(N(uf))= ∑
K

j=1

(uf
j -m(N(uf)))2

K -1
。 (7)

最后,使用k个均值和标准差对样本u 进行标准化:

u- =
1
k∑

k

f=1

u-m(N(uf))
s(N(uf))

。 (8)

2.2 双近邻标准化局部离群因子的故障检测步骤

假设已有正常状态下的训练集和引入故障的测试集,DLNS-LOF的故障检测步骤如下。

1)
 

离线建模阶段:首先,计算每个训练样本的嵌套空间近邻集,获取均值和标准差,进而对每个训练样

本进行双近邻标准化(DLNS);然后,通过式(1)~(3)计算每个训练样本的局部离群因子;最后,使用核密度

估计技术确定局部离群因子的控制限。

2)
 

在线检测阶段:首先,对每个测试样本,基于其近邻信息进行双近邻标准化;然后,计算每个测试样本

的局部离群因子;最后,用测试样本的局部离群因子(LOF)与离线建模阶段获取的控制限进行比较,若超出

控制限则判定为故障样本,否则为正常样本。
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3 实验过程与分析

为验证所提方法的故障检测性能,分别使用数值模拟过程和青霉素发酵过程对DLNS-LOF方法进行性

能检验,并与一些经典方法进行比较。

3.1 数值模拟过程

为验证DLNS-LOF方法的有效性,设计了一个具有非线性特征的多模态数值模拟过程,其过程模态一、
模态二的表达式分别为:

x1=e
0.04s1sins2+e,

x2=-0.5s1+e; (9)

x1=e
0.02s1coss2+25+e,

x2=-0.5s1+e。 (10)

图2 过程数据的空间散点图

Fig.
 

2 Spatial
 

scatterplot
 

of
 

process
 

data

式中:s1 为服从区间[0,72]的均匀分布,s2 为

服从区间[0,10π]的均匀分布,e为独立的随机

噪声变量。在数值模拟过程的正常状态下,先
分别从模态一和模态二中采集1

 

000个样本,
共同构成训练集;再从两模态中采集100个样

本,共同构成测试集。最后,在过程中引入图2
所示的9个故障样本。

分别使用LOF[9]、LNS-kNN[11]和DLNS-
LOF方法对该数值模拟过程进行故障检测,设
定置信度为97%以确定控制限。LOF方法的

近邻参数k 设为3;LNS-kNN中LNS的近邻

参数K 设为5,kNN 的近邻参数k 设为4;

DLNS-LOF中DLNS的两个近邻参数k 和K
分别设为5和12,LOF的近邻参数k 为7。3
种方法的故障检测结果如图3所示。

图3 故障检测图

Fig.
 

3 Fault
 

detection
 

diagrams

  从图3可以看出,DLNS-LOF方法取得了最好的故障检测结果。故障1、2和3是位于模态一的微弱

故障,其故障样本与训练样本的距离和部分训练样本间的距离大小相似。LOF方法在处理此类故障时,
故障样本到近邻样本的可达距离将部分取值为近邻样本的第k距离,而非其到近邻样本的距离。上述现

象导致故障样本和近邻样本的局部可达密度非常接近,使得故障局部离群因子在1附近波动,难以有效
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识别故障样本。
故障4和5在训练集中的近邻样本来源于两个模态,且其均值近似等于故障样本的坐标值,因此故障4

和5经LNS标准化处理后,被移动到原点附近,混入正常样本中,如图4(a)所示。而DLNS通过利用嵌套

近邻集的均值和标准差进行标准化,避免了因近邻样本跨模态导致的偏差,从而有效分离出故障4和5,如
图4(b)所示。LNS-kNN在处理LNS标准化后的数据时,由于故障4和5与近邻样本的距离和正常样本相

似,故无法检出故障4和5。而LOF在处理DLNS后的数据时,正常样本在训练集中近邻样本的均值密度

与自身密度大小接近,统计值接近于1。故障样本在训练集中近邻样本的均值密度比自身密度大的多,因此

统计值显著大于1。故DLNS-LOF能够检出所有故障样本。

图4 LNS和DLNS后过程数据的空间散点图

Fig.
 

4 Spatial
 

scatterplots
 

of
 

process
 

data
 

after
 

LNS
 

and
 

DLNS

表1 青霉素发酵过程所选变量

Table
 

1 Selected
 

variables
 

for
 

the
 

penicillin
 

fermentation
 

process

序号 变量名 序号 变量名

1 通风率 7 反应器温度

2 搅拌功率 8 底物浓度

3 底物流速率 9 溶解氧浓度

4 底物流温度 10 菌体浓度

5 反应器体积 11 青霉素浓度

6 CO2 浓度 12 反应热

3.2 青霉素发酵过程

青霉素发酵过程是典型的具有非线性

特征的多模态工业生产过程。本节实验数

据来源于青霉素发酵过程的仿真平台[13],
该平台已被多项研究[14-16]用于验证过程监

控算法性能。实验所选取的变量见表1。
仿真时长设置为400

 

h,并间隔1
 

h采

样一次。首先在正常过程运行下采集一批

数据作为训练集,随后在通风率、搅拌功率

和底物流速率中分别添加阶跃或斜坡故

障,设置如表2所示的6类故障,并相应生成6批测试集。每批测试集的故障皆从第51
 

h开始持续到过程

结束。

表2 故障信息

Table
 

2 Description
 

of
 

faults

批次 故障变量 故障类型 故障幅度 批次 故障变量 故障类型 故障幅度

F1 1 阶跃 -0.5% F4 1 斜坡 -2.5
 

L/h

F2 2 阶跃 -1.5% F5 2 斜坡 -4.5
 

W

F3 3 阶跃 2.5% F6 3 斜坡 0.02
 

L/h
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表3 所用方法的故障检测率

Table
 

3 Fault
 

detection
 

rate
 

of
 

the
 

method
 

used %

批次 kNN SD-kNN LOF DLNS-LOF

F1 88.57 98.29 96.86 98.57

F2 56.57 91.43 88.57 99.43

F3 1.14 7.14 6.00 99.14

F4 100.00 100.00 100.00 100.00

F5 98.00 98.57 98.57 100.00

F6 84.29 88.86 86.29 98.86

  分别使用kNN[7]、SD-kNN[8]、LOF[9]和
DLNS-LOF方法对青霉素发酵过程进行故障

检测,置信度均设为98%。kNN和LOF均设

置近邻参数k 为4;SD-kNN设置疏密信息参

数K 为10,近邻参数k 为4;DLNS-LOF设置

DLNS的近邻参数k 和K 分别为2和7,kNN
的近邻参数k 设为4。各方法的故障检测率如

表3所示。
由表3可知,DLNS-LOF方法故障检测率

最高,尤其在F3批次的测试集上表现突出。
从图5过程数据中变量1、2、3的空间散点图可以发现,故障样本距正常样本的距离与正常样本间的距离相

近。kNN、LOF和SD-kNN方法本质上都是基于近邻距离的故障检测方法,难以识别此类故障样本。LOF
和SD-kNN因不受样本疏密程度影响,其故障检测率高于kNN。DLNS技术利用嵌套近邻集的均值和标准

差对过程数据进行标准化,有效分离了此类微弱故障。图6和图7分别展示了DLNS处理后变量1、2、3的

空间散点图与频率分布图,可见原具有非线性、多模态特征的过程数据被转化为近似服从标准正态分布的单

模态数据,且故障样本得到明显分离。故障样本的有效分离使得故障样本的近邻样本与自身的相对密度值

增大,即局部离群因子增大,从而提高了DLNS-LOF的检测率,结果如图8所示。

图5 过程数据变量1、2和3的空间散点图

Fig.
 

5 Spatial
 

scatterplot
 

of
 

variables
 

1,2
 

and
 

3
 

in
 

process
 

data
图6 DLNS处理后变量1、2和3的空间散点图

Fig.
 

6 Spatial
 

scatterplot
 

of
 

variables
 

1,
 

2
 

and
 

3
 

after
 

DLNS

图7 DLNS处理后变量1、2和3的频率分布图

Fig.
 

7 Frequency
 

distribution
 

of
 

variables
 

1,
 

2,
 

and
 

3
 

after
 

DLNS

图8 DLNS-LOF方法对F3批次测试集的故障检测图

Fig.
 

8 Fault
 

detection
 

plot
 

of
 

DLNS-LOF
 

method
 

for
 

F3
 

batch
 

test
 

set
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  DLNS技术能够成功转化非线性多模态过程数据为近似服从标准正态分布的单模态数据,并成功分离

出空间上发生偏离的故障样本。鉴于许多经典算法对于过程数据基于单模态和高斯分布的假设,DLNS可

以帮助其实现数据转换以剔除不利特征的影响,显著提升其故障检测能力。

4 结论

现实中的多数大型工业生产过程具有非线性和多模态特征。DLNS-LOF方法采用DLNS技术,能够将

具有非线性特征的多模态过程数据转化为近似服从标准正态分布的单模态数据,并在处理过程中有效分离

故障样本,从而显著提升LOF方法的故障检测性能。与传统方法相比,DLNS-LOF展现出更优的故障识别

能力,有助于更好地保障系统的安全性与可靠性。然而,DLNS技术仅从空间角度考虑故障样本的分离,对

于因过程动态性导致的故障样本,即在空间分布上与正常样本重叠但发生时间不同的情况难以实现有效区

分。这意味着DLNS目前仅适用于稳态过程数据的故障检测,未来将针对动态过程下的故障检测问题进一

步研究。
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